641 lines
20 KiB
Diff
641 lines
20 KiB
Diff
# Patch for Crypto++ timing leaks in EC gear (GH #869)
|
|
# diff of Crypto++ 8.2 and Master 04b2a20c5da5
|
|
--- pubkey.h
|
|
+++ pubkey.h
|
|
@@ -886,7 +886,7 @@
|
|
/// \brief Retrieves the encoded element's size
|
|
/// \param reversible flag indicating the encoding format
|
|
/// \return encoded element's size, in bytes
|
|
- /// \details The format of the encoded element varies by the underlyinhg type of the element and the
|
|
+ /// \details The format of the encoded element varies by the underlying type of the element and the
|
|
/// reversible flag. GetEncodedElementSize() must be implemented in a derived class.
|
|
/// \sa GetEncodedElementSize(), EncodeElement(), DecodeElement()
|
|
virtual unsigned int GetEncodedElementSize(bool reversible) const =0;
|
|
@@ -1604,10 +1604,10 @@
|
|
if (rng.CanIncorporateEntropy())
|
|
rng.IncorporateEntropy(representative, representative.size());
|
|
|
|
- Integer k;
|
|
+ Integer k, ks;
|
|
+ const Integer& q = params.GetSubgroupOrder();
|
|
if (alg.IsDeterministic())
|
|
{
|
|
- const Integer& q = params.GetSubgroupOrder();
|
|
const Integer& x = key.GetPrivateExponent();
|
|
const DeterministicSignatureAlgorithm& det = dynamic_cast<const DeterministicSignatureAlgorithm&>(alg);
|
|
k = det.GenerateRandom(x, q, e);
|
|
@@ -1617,8 +1617,15 @@
|
|
k.Randomize(rng, 1, params.GetSubgroupOrder()-1);
|
|
}
|
|
|
|
+ // Due to timing attack on nonce length by Jancar
|
|
+ // https://github.com/weidai11/cryptopp/issues/869
|
|
+ ks = k + q;
|
|
+ if (ks.BitCount() == q.BitCount()) {
|
|
+ ks += q;
|
|
+ }
|
|
+
|
|
Integer r, s;
|
|
- r = params.ConvertElementToInteger(params.ExponentiateBase(k));
|
|
+ r = params.ConvertElementToInteger(params.ExponentiateBase(ks));
|
|
alg.Sign(params, key.GetPrivateExponent(), k, e, r, s);
|
|
|
|
/*
|
|
@@ -1630,7 +1637,7 @@
|
|
alg.Sign(params, key.GetPrivateExponent(), ma.m_k, e, r, s);
|
|
*/
|
|
|
|
- size_t rLen = alg.RLen(params);
|
|
+ const size_t rLen = alg.RLen(params);
|
|
r.Encode(signature, rLen);
|
|
s.Encode(signature+rLen, alg.SLen(params));
|
|
|
|
--- ecp.cpp
|
|
+++ ecp.cpp
|
|
@@ -15,10 +15,12 @@
|
|
ANONYMOUS_NAMESPACE_BEGIN
|
|
|
|
using CryptoPP::ECP;
|
|
+using CryptoPP::Integer;
|
|
using CryptoPP::ModularArithmetic;
|
|
|
|
#if defined(HAVE_GCC_INIT_PRIORITY)
|
|
- const ECP::Point g_identity __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 51))) = ECP::Point();
|
|
+ #define INIT_ATTRIBUTE __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 50)))
|
|
+ const ECP::Point g_identity INIT_ATTRIBUTE = ECP::Point();
|
|
#elif defined(HAVE_MSC_INIT_PRIORITY)
|
|
#pragma warning(disable: 4075)
|
|
#pragma init_seg(".CRT$XCU")
|
|
@@ -39,6 +41,502 @@
|
|
return P.identity ? P : ECP::Point(mr.ConvertOut(P.x), mr.ConvertOut(P.y));
|
|
}
|
|
|
|
+inline Integer IdentityToInteger(bool val)
|
|
+{
|
|
+ return val ? Integer::One() : Integer::Zero();
|
|
+}
|
|
+
|
|
+struct ProjectivePoint
|
|
+{
|
|
+ ProjectivePoint() {}
|
|
+ ProjectivePoint(const Integer &x, const Integer &y, const Integer &z)
|
|
+ : x(x), y(y), z(z) {}
|
|
+
|
|
+ Integer x, y, z;
|
|
+};
|
|
+
|
|
+/// \brief Addition and Double functions
|
|
+/// \sa <A HREF="https://eprint.iacr.org/2015/1060.pdf">Complete
|
|
+/// addition formulas for prime order elliptic curves</A>
|
|
+struct AdditionFunction
|
|
+{
|
|
+ explicit AdditionFunction(const ECP::Field& field,
|
|
+ const ECP::FieldElement &a, const ECP::FieldElement &b, ECP::Point &r);
|
|
+
|
|
+ // Double(P)
|
|
+ ECP::Point operator()(const ECP::Point& P) const;
|
|
+ // Add(P, Q)
|
|
+ ECP::Point operator()(const ECP::Point& P, const ECP::Point& Q) const;
|
|
+
|
|
+protected:
|
|
+ /// \brief Parameters and representation for Addition
|
|
+ /// \details Addition and Doubling will use different algorithms,
|
|
+ /// depending on the <tt>A</tt> coefficient and the representation
|
|
+ /// (Affine or Montgomery with precomputation).
|
|
+ enum Alpha {
|
|
+ /// \brief Coefficient A is 0
|
|
+ A_0 = 1,
|
|
+ /// \brief Coefficient A is -3
|
|
+ A_3 = 2,
|
|
+ /// \brief Coefficient A is arbitrary
|
|
+ A_Star = 4,
|
|
+ /// \brief Representation is Montgomery
|
|
+ A_Montgomery = 8
|
|
+ };
|
|
+
|
|
+ const ECP::Field& field;
|
|
+ const ECP::FieldElement &a, &b;
|
|
+ ECP::Point &R;
|
|
+
|
|
+ Alpha m_alpha;
|
|
+};
|
|
+
|
|
+#define X p.x
|
|
+#define Y p.y
|
|
+#define Z p.z
|
|
+
|
|
+#define X1 p.x
|
|
+#define Y1 p.y
|
|
+#define Z1 p.z
|
|
+
|
|
+#define X2 q.x
|
|
+#define Y2 q.y
|
|
+#define Z2 q.z
|
|
+
|
|
+#define X3 r.x
|
|
+#define Y3 r.y
|
|
+#define Z3 r.z
|
|
+
|
|
+AdditionFunction::AdditionFunction(const ECP::Field& field,
|
|
+ const ECP::FieldElement &a, const ECP::FieldElement &b, ECP::Point &r)
|
|
+ : field(field), a(a), b(b), R(r), m_alpha(static_cast<Alpha>(0))
|
|
+{
|
|
+ if (field.IsMontgomeryRepresentation())
|
|
+ {
|
|
+ m_alpha = A_Montgomery;
|
|
+ }
|
|
+ else
|
|
+ {
|
|
+ if (a == 0)
|
|
+ {
|
|
+ m_alpha = A_0;
|
|
+ }
|
|
+ else if (a == -3 || (a - field.GetModulus()) == -3)
|
|
+ {
|
|
+ m_alpha = A_3;
|
|
+ }
|
|
+ else
|
|
+ {
|
|
+ m_alpha = A_Star;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+ECP::Point AdditionFunction::operator()(const ECP::Point& P) const
|
|
+{
|
|
+ if (m_alpha == A_3)
|
|
+ {
|
|
+ // Gyrations attempt to maintain constant-timeness
|
|
+ // We need either (P.x, P.y, 1) or (0, 1, 0).
|
|
+ const Integer x = P.x * IdentityToInteger(!P.identity);
|
|
+ const Integer y = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity);
|
|
+ const Integer z = 1 * IdentityToInteger(!P.identity);
|
|
+
|
|
+ ProjectivePoint p(x, y, z), r;
|
|
+
|
|
+ ECP::FieldElement t0 = field.Square(X);
|
|
+ ECP::FieldElement t1 = field.Square(Y);
|
|
+ ECP::FieldElement t2 = field.Square(Z);
|
|
+ ECP::FieldElement t3 = field.Multiply(X, Y);
|
|
+ t3 = field.Add(t3, t3);
|
|
+ Z3 = field.Multiply(X, Z);
|
|
+ Z3 = field.Add(Z3, Z3);
|
|
+ Y3 = field.Multiply(b, t2);
|
|
+ Y3 = field.Subtract(Y3, Z3);
|
|
+ X3 = field.Add(Y3, Y3);
|
|
+ Y3 = field.Add(X3, Y3);
|
|
+ X3 = field.Subtract(t1, Y3);
|
|
+ Y3 = field.Add(t1, Y3);
|
|
+ Y3 = field.Multiply(X3, Y3);
|
|
+ X3 = field.Multiply(X3, t3);
|
|
+ t3 = field.Add(t2, t2);
|
|
+ t2 = field.Add(t2, t3);
|
|
+ Z3 = field.Multiply(b, Z3);
|
|
+ Z3 = field.Subtract(Z3, t2);
|
|
+ Z3 = field.Subtract(Z3, t0);
|
|
+ t3 = field.Add(Z3, Z3);
|
|
+ Z3 = field.Add(Z3, t3);
|
|
+ t3 = field.Add(t0, t0);
|
|
+ t0 = field.Add(t3, t0);
|
|
+ t0 = field.Subtract(t0, t2);
|
|
+ t0 = field.Multiply(t0, Z3);
|
|
+ Y3 = field.Add(Y3, t0);
|
|
+ t0 = field.Multiply(Y, Z);
|
|
+ t0 = field.Add(t0, t0);
|
|
+ Z3 = field.Multiply(t0, Z3);
|
|
+ X3 = field.Subtract(X3, Z3);
|
|
+ Z3 = field.Multiply(t0, t1);
|
|
+ Z3 = field.Add(Z3, Z3);
|
|
+ Z3 = field.Add(Z3, Z3);
|
|
+
|
|
+ const ECP::FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
|
|
+ X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
|
|
+
|
|
+ // More gyrations
|
|
+ R.x = X3*Z3.NotZero();
|
|
+ R.y = Y3*Z3.NotZero();
|
|
+ R.identity = Z3.IsZero();
|
|
+
|
|
+ return R;
|
|
+ }
|
|
+ else if (m_alpha == A_0)
|
|
+ {
|
|
+ const ECP::FieldElement b3 = field.Multiply(b, 3);
|
|
+
|
|
+ // Gyrations attempt to maintain constant-timeness
|
|
+ // We need either (P.x, P.y, 1) or (0, 1, 0).
|
|
+ const Integer x = P.x * IdentityToInteger(!P.identity);
|
|
+ const Integer y = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity);
|
|
+ const Integer z = 1 * IdentityToInteger(!P.identity);
|
|
+
|
|
+ ProjectivePoint p(x, y, z), r;
|
|
+
|
|
+ ECP::FieldElement t0 = field.Square(Y);
|
|
+ Z3 = field.Add(t0, t0);
|
|
+ Z3 = field.Add(Z3, Z3);
|
|
+ Z3 = field.Add(Z3, Z3);
|
|
+ ECP::FieldElement t1 = field.Add(Y, Z);
|
|
+ ECP::FieldElement t2 = field.Square(Z);
|
|
+ t2 = field.Multiply(b3, t2);
|
|
+ X3 = field.Multiply(t2, Z3);
|
|
+ Y3 = field.Add(t0, t2);
|
|
+ Z3 = field.Multiply(t1, Z3);
|
|
+ t1 = field.Add(t2, t2);
|
|
+ t2 = field.Add(t1, t2);
|
|
+ t0 = field.Subtract(t0, t2);
|
|
+ Y3 = field.Multiply(t0, Y3);
|
|
+ Y3 = field.Add(X3, Y3);
|
|
+ t1 = field.Multiply(X, Y);
|
|
+ X3 = field.Multiply(t0, t1);
|
|
+ X3 = field.Add(X3, X3);
|
|
+
|
|
+ const ECP::FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
|
|
+ X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
|
|
+
|
|
+ // More gyrations
|
|
+ R.x = X3*Z3.NotZero();
|
|
+ R.y = Y3*Z3.NotZero();
|
|
+ R.identity = Z3.IsZero();
|
|
+
|
|
+ return R;
|
|
+ }
|
|
+ else if (m_alpha == A_Star)
|
|
+ {
|
|
+ const ECP::FieldElement b3 = field.Multiply(b, 3);
|
|
+
|
|
+ // Gyrations attempt to maintain constant-timeness
|
|
+ // We need either (P.x, P.y, 1) or (0, 1, 0).
|
|
+ const Integer x = P.x * IdentityToInteger(!P.identity);
|
|
+ const Integer y = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity);
|
|
+ const Integer z = 1 * IdentityToInteger(!P.identity);
|
|
+
|
|
+ ProjectivePoint p(x, y, z), r;
|
|
+
|
|
+ ECP::FieldElement t0 = field.Square(Y);
|
|
+ Z3 = field.Add(t0, t0);
|
|
+ Z3 = field.Add(Z3, Z3);
|
|
+ Z3 = field.Add(Z3, Z3);
|
|
+ ECP::FieldElement t1 = field.Add(Y, Z);
|
|
+ ECP::FieldElement t2 = field.Square(Z);
|
|
+ t2 = field.Multiply(b3, t2);
|
|
+ X3 = field.Multiply(t2, Z3);
|
|
+ Y3 = field.Add(t0, t2);
|
|
+ Z3 = field.Multiply(t1, Z3);
|
|
+ t1 = field.Add(t2, t2);
|
|
+ t2 = field.Add(t1, t2);
|
|
+ t0 = field.Subtract(t0, t2);
|
|
+ Y3 = field.Multiply(t0, Y3);
|
|
+ Y3 = field.Add(X3, Y3);
|
|
+ t1 = field.Multiply(X, Y);
|
|
+ X3 = field.Multiply(t0, t1);
|
|
+ X3 = field.Add(X3, X3);
|
|
+
|
|
+ const ECP::FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
|
|
+ X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
|
|
+
|
|
+ // More gyrations
|
|
+ R.x = X3*Z3.NotZero();
|
|
+ R.y = Y3*Z3.NotZero();
|
|
+ R.identity = Z3.IsZero();
|
|
+
|
|
+ return R;
|
|
+ }
|
|
+ else // A_Montgomery
|
|
+ {
|
|
+ // More gyrations
|
|
+ bool identity = !!(P.identity + (P.y == field.Identity()));
|
|
+
|
|
+ ECP::FieldElement t = field.Square(P.x);
|
|
+ t = field.Add(field.Add(field.Double(t), t), a);
|
|
+ t = field.Divide(t, field.Double(P.y));
|
|
+ ECP::FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), P.x);
|
|
+ R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y);
|
|
+ R.x.swap(x);
|
|
+
|
|
+ // More gyrations
|
|
+ R.x *= IdentityToInteger(!identity);
|
|
+ R.y *= IdentityToInteger(!identity);
|
|
+ R.identity = identity;
|
|
+
|
|
+ return R;
|
|
+ }
|
|
+}
|
|
+
|
|
+ECP::Point AdditionFunction::operator()(const ECP::Point& P, const ECP::Point& Q) const
|
|
+{
|
|
+ if (m_alpha == A_3)
|
|
+ {
|
|
+ // Gyrations attempt to maintain constant-timeness
|
|
+ // We need either (P.x, P.y, 1) or (0, 1, 0).
|
|
+ const Integer x1 = P.x * IdentityToInteger(!P.identity);
|
|
+ const Integer y1 = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity);
|
|
+ const Integer z1 = 1 * IdentityToInteger(!P.identity);
|
|
+
|
|
+ const Integer x2 = Q.x * IdentityToInteger(!Q.identity);
|
|
+ const Integer y2 = Q.y * IdentityToInteger(!Q.identity) + 1 * IdentityToInteger(Q.identity);
|
|
+ const Integer z2 = 1 * IdentityToInteger(!Q.identity);
|
|
+
|
|
+ ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r;
|
|
+
|
|
+ ECP::FieldElement t0 = field.Multiply(X1, X2);
|
|
+ ECP::FieldElement t1 = field.Multiply(Y1, Y2);
|
|
+ ECP::FieldElement t2 = field.Multiply(Z1, Z2);
|
|
+ ECP::FieldElement t3 = field.Add(X1, Y1);
|
|
+ ECP::FieldElement t4 = field.Add(X2, Y2);
|
|
+ t3 = field.Multiply(t3, t4);
|
|
+ t4 = field.Add(t0, t1);
|
|
+ t3 = field.Subtract(t3, t4);
|
|
+ t4 = field.Add(Y1, Z1);
|
|
+ X3 = field.Add(Y2, Z2);
|
|
+ t4 = field.Multiply(t4, X3);
|
|
+ X3 = field.Add(t1, t2);
|
|
+ t4 = field.Subtract(t4, X3);
|
|
+ X3 = field.Add(X1, Z1);
|
|
+ Y3 = field.Add(X2, Z2);
|
|
+ X3 = field.Multiply(X3, Y3);
|
|
+ Y3 = field.Add(t0, t2);
|
|
+ Y3 = field.Subtract(X3, Y3);
|
|
+ Z3 = field.Multiply(b, t2);
|
|
+ X3 = field.Subtract(Y3, Z3);
|
|
+ Z3 = field.Add(X3, X3);
|
|
+ X3 = field.Add(X3, Z3);
|
|
+ Z3 = field.Subtract(t1, X3);
|
|
+ X3 = field.Add(t1, X3);
|
|
+ Y3 = field.Multiply(b, Y3);
|
|
+ t1 = field.Add(t2, t2);
|
|
+ t2 = field.Add(t1, t2);
|
|
+ Y3 = field.Subtract(Y3, t2);
|
|
+ Y3 = field.Subtract(Y3, t0);
|
|
+ t1 = field.Add(Y3, Y3);
|
|
+ Y3 = field.Add(t1, Y3);
|
|
+ t1 = field.Add(t0, t0);
|
|
+ t0 = field.Add(t1, t0);
|
|
+ t0 = field.Subtract(t0, t2);
|
|
+ t1 = field.Multiply(t4, Y3);
|
|
+ t2 = field.Multiply(t0, Y3);
|
|
+ Y3 = field.Multiply(X3, Z3);
|
|
+ Y3 = field.Add(Y3, t2);
|
|
+ X3 = field.Multiply(t3, X3);
|
|
+ X3 = field.Subtract(X3, t1);
|
|
+ Z3 = field.Multiply(t4, Z3);
|
|
+ t1 = field.Multiply(t3, t0);
|
|
+ Z3 = field.Add(Z3, t1);
|
|
+
|
|
+ const ECP::FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
|
|
+ X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
|
|
+
|
|
+ // More gyrations
|
|
+ R.x = X3*Z3.NotZero();
|
|
+ R.y = Y3*Z3.NotZero();
|
|
+ R.identity = Z3.IsZero();
|
|
+
|
|
+ return R;
|
|
+ }
|
|
+ else if (m_alpha == A_0)
|
|
+ {
|
|
+ const ECP::FieldElement b3 = field.Multiply(b, 3);
|
|
+
|
|
+ // Gyrations attempt to maintain constant-timeness
|
|
+ // We need either (P.x, P.y, 1) or (0, 1, 0).
|
|
+ const Integer x1 = P.x * IdentityToInteger(!P.identity);
|
|
+ const Integer y1 = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity);
|
|
+ const Integer z1 = 1 * IdentityToInteger(!P.identity);
|
|
+
|
|
+ const Integer x2 = Q.x * IdentityToInteger(!Q.identity);
|
|
+ const Integer y2 = Q.y * IdentityToInteger(!Q.identity) + 1 * IdentityToInteger(Q.identity);
|
|
+ const Integer z2 = 1 * IdentityToInteger(!Q.identity);
|
|
+
|
|
+ ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r;
|
|
+
|
|
+ ECP::FieldElement t0 = field.Square(Y);
|
|
+ Z3 = field.Add(t0, t0);
|
|
+ Z3 = field.Add(Z3, Z3);
|
|
+ Z3 = field.Add(Z3, Z3);
|
|
+ ECP::FieldElement t1 = field.Add(Y, Z);
|
|
+ ECP::FieldElement t2 = field.Square(Z);
|
|
+ t2 = field.Multiply(b3, t2);
|
|
+ X3 = field.Multiply(t2, Z3);
|
|
+ Y3 = field.Add(t0, t2);
|
|
+ Z3 = field.Multiply(t1, Z3);
|
|
+ t1 = field.Add(t2, t2);
|
|
+ t2 = field.Add(t1, t2);
|
|
+ t0 = field.Subtract(t0, t2);
|
|
+ Y3 = field.Multiply(t0, Y3);
|
|
+ Y3 = field.Add(X3, Y3);
|
|
+ t1 = field.Multiply(X, Y);
|
|
+ X3 = field.Multiply(t0, t1);
|
|
+ X3 = field.Add(X3, X3);
|
|
+
|
|
+ const ECP::FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
|
|
+ X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
|
|
+
|
|
+ // More gyrations
|
|
+ R.x = X3*Z3.NotZero();
|
|
+ R.y = Y3*Z3.NotZero();
|
|
+ R.identity = Z3.IsZero();
|
|
+
|
|
+ return R;
|
|
+ }
|
|
+ else if (m_alpha == A_Star)
|
|
+ {
|
|
+ const ECP::FieldElement b3 = field.Multiply(b, 3);
|
|
+
|
|
+ // Gyrations attempt to maintain constant-timeness
|
|
+ // We need either (P.x, P.y, 1) or (0, 1, 0).
|
|
+ const Integer x1 = P.x * IdentityToInteger(!P.identity);
|
|
+ const Integer y1 = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity);
|
|
+ const Integer z1 = 1 * IdentityToInteger(!P.identity);
|
|
+
|
|
+ const Integer x2 = Q.x * IdentityToInteger(!Q.identity);
|
|
+ const Integer y2 = Q.y * IdentityToInteger(!Q.identity) + 1 * IdentityToInteger(Q.identity);
|
|
+ const Integer z2 = 1 * IdentityToInteger(!Q.identity);
|
|
+
|
|
+ ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r;
|
|
+
|
|
+ ECP::FieldElement t0 = field.Multiply(X1, X2);
|
|
+ ECP::FieldElement t1 = field.Multiply(Y1, Y2);
|
|
+ ECP::FieldElement t2 = field.Multiply(Z1, Z2);
|
|
+ ECP::FieldElement t3 = field.Add(X1, Y1);
|
|
+ ECP::FieldElement t4 = field.Add(X2, Y2);
|
|
+ t3 = field.Multiply(t3, t4);
|
|
+ t4 = field.Add(t0, t1);
|
|
+ t3 = field.Subtract(t3, t4);
|
|
+ t4 = field.Add(X1, Z1);
|
|
+ ECP::FieldElement t5 = field.Add(X2, Z2);
|
|
+ t4 = field.Multiply(t4, t5);
|
|
+ t5 = field.Add(t0, t2);
|
|
+ t4 = field.Subtract(t4, t5);
|
|
+ t5 = field.Add(Y1, Z1);
|
|
+ X3 = field.Add(Y2, Z2);
|
|
+ t5 = field.Multiply(t5, X3);
|
|
+ X3 = field.Add(t1, t2);
|
|
+ t5 = field.Subtract(t5, X3);
|
|
+ Z3 = field.Multiply(a, t4);
|
|
+ X3 = field.Multiply(b3, t2);
|
|
+ Z3 = field.Add(X3, Z3);
|
|
+ X3 = field.Subtract(t1, Z3);
|
|
+ Z3 = field.Add(t1, Z3);
|
|
+ Y3 = field.Multiply(X3, Z3);
|
|
+ t1 = field.Add(t0, t0);
|
|
+ t1 = field.Add(t1, t0);
|
|
+ t2 = field.Multiply(a, t2);
|
|
+ t4 = field.Multiply(b3, t4);
|
|
+ t1 = field.Add(t1, t2);
|
|
+ t2 = field.Subtract(t0, t2);
|
|
+ t2 = field.Multiply(a, t2);
|
|
+ t4 = field.Add(t4, t2);
|
|
+ t0 = field.Multiply(t1, t4);
|
|
+ Y3 = field.Add(Y3, t0);
|
|
+ t0 = field.Multiply(t5, t4);
|
|
+ X3 = field.Multiply(t3, X3);
|
|
+ X3 = field.Subtract(X3, t0);
|
|
+ t0 = field.Multiply(t3, t1);
|
|
+ Z3 = field.Multiply(t5, Z3);
|
|
+ Z3 = field.Add(Z3, t0);
|
|
+
|
|
+ const ECP::FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
|
|
+ X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
|
|
+
|
|
+ // More gyrations
|
|
+ R.x = X3*Z3.NotZero();
|
|
+ R.y = Y3*Z3.NotZero();
|
|
+ R.identity = Z3.IsZero();
|
|
+
|
|
+ return R;
|
|
+ }
|
|
+ else // A_Montgomery
|
|
+ {
|
|
+ ECP::Point S = R;
|
|
+
|
|
+ // More gyrations
|
|
+ bool return_Q = P.identity;
|
|
+ bool return_P = Q.identity;
|
|
+ bool double_P = field.Equal(P.x, Q.x) && field.Equal(P.y, Q.y);
|
|
+ bool identity = field.Equal(P.x, Q.x) && !field.Equal(P.y, Q.y);
|
|
+
|
|
+ // This code taken from Double(P) for below
|
|
+ identity = !!((double_P * (P.identity + (P.y == field.Identity()))) + identity);
|
|
+
|
|
+ if (double_P)
|
|
+ {
|
|
+ // This code taken from Double(P)
|
|
+ ECP::FieldElement t = field.Square(P.x);
|
|
+ t = field.Add(field.Add(field.Double(t), t), a);
|
|
+ t = field.Divide(t, field.Double(P.y));
|
|
+ ECP::FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), P.x);
|
|
+ R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y);
|
|
+ R.x.swap(x);
|
|
+ }
|
|
+ else
|
|
+ {
|
|
+ // Original Add(P,Q) code
|
|
+ ECP::FieldElement t = field.Subtract(Q.y, P.y);
|
|
+ t = field.Divide(t, field.Subtract(Q.x, P.x));
|
|
+ ECP::FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), Q.x);
|
|
+ R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y);
|
|
+ R.x.swap(x);
|
|
+ }
|
|
+
|
|
+ // More gyrations
|
|
+ R.x = R.x * IdentityToInteger(!identity);
|
|
+ R.y = R.y * IdentityToInteger(!identity);
|
|
+ R.identity = identity;
|
|
+
|
|
+ if (return_Q)
|
|
+ return (R = S), Q;
|
|
+ else if (return_P)
|
|
+ return (R = S), P;
|
|
+ else
|
|
+ return (S = R), R;
|
|
+ }
|
|
+}
|
|
+
|
|
+#undef X
|
|
+#undef Y
|
|
+#undef Z
|
|
+
|
|
+#undef X1
|
|
+#undef Y1
|
|
+#undef Z1
|
|
+
|
|
+#undef X2
|
|
+#undef Y2
|
|
+#undef Z2
|
|
+
|
|
+#undef X3
|
|
+#undef Y3
|
|
+#undef Z3
|
|
+
|
|
ANONYMOUS_NAMESPACE_END
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
@@ -243,34 +741,14 @@
|
|
|
|
const ECP::Point& ECP::Add(const Point &P, const Point &Q) const
|
|
{
|
|
- if (P.identity) return Q;
|
|
- if (Q.identity) return P;
|
|
- if (GetField().Equal(P.x, Q.x))
|
|
- return GetField().Equal(P.y, Q.y) ? Double(P) : Identity();
|
|
-
|
|
- FieldElement t = GetField().Subtract(Q.y, P.y);
|
|
- t = GetField().Divide(t, GetField().Subtract(Q.x, P.x));
|
|
- FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), Q.x);
|
|
- m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y);
|
|
-
|
|
- m_R.x.swap(x);
|
|
- m_R.identity = false;
|
|
- return m_R;
|
|
+ AdditionFunction add(GetField(), m_a, m_b, m_R);
|
|
+ return (m_R = add(P, Q));
|
|
}
|
|
|
|
const ECP::Point& ECP::Double(const Point &P) const
|
|
{
|
|
- if (P.identity || P.y==GetField().Identity()) return Identity();
|
|
-
|
|
- FieldElement t = GetField().Square(P.x);
|
|
- t = GetField().Add(GetField().Add(GetField().Double(t), t), m_a);
|
|
- t = GetField().Divide(t, GetField().Double(P.y));
|
|
- FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), P.x);
|
|
- m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y);
|
|
-
|
|
- m_R.x.swap(x);
|
|
- m_R.identity = false;
|
|
- return m_R;
|
|
+ AdditionFunction add(GetField(), m_a, m_b, m_R);
|
|
+ return (m_R = add(P));
|
|
}
|
|
|
|
template <class T, class Iterator> void ParallelInvert(const AbstractRing<T> &ring, Iterator begin, Iterator end)
|
|
@@ -310,20 +788,11 @@
|
|
}
|
|
}
|
|
|
|
-struct ProjectivePoint
|
|
-{
|
|
- ProjectivePoint() {}
|
|
- ProjectivePoint(const Integer &x, const Integer &y, const Integer &z)
|
|
- : x(x), y(y), z(z) {}
|
|
-
|
|
- Integer x,y,z;
|
|
-};
|
|
-
|
|
class ProjectiveDoubling
|
|
{
|
|
public:
|
|
ProjectiveDoubling(const ModularArithmetic &m_mr, const Integer &m_a, const Integer &m_b, const ECPPoint &Q)
|
|
- : mr(m_mr), firstDoubling(true), negated(false)
|
|
+ : mr(m_mr)
|
|
{
|
|
CRYPTOPP_UNUSED(m_b);
|
|
if (Q.identity)
|
|
@@ -360,7 +829,6 @@
|
|
|
|
const ModularArithmetic &mr;
|
|
ProjectivePoint P;
|
|
- bool firstDoubling, negated;
|
|
Integer sixteenY4, aZ4, twoY, fourY2, S, M;
|
|
};
|
|
|